Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Allergy Clin Immunol ; 2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2282572

ABSTRACT

BACKGROUND: CD11c+Tbet+ B cells are enriched in autoimmunity and chronic infections and also expand on immune challenge in healthy individuals. CD11c+Tbet+ B cells remain an enigmatic B-cell population because of their intrinsic heterogeneity. OBJECTIVES: We investigated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen-specific development and differentiation properties of 3 separate CD11c+ B-cell subsets-age-associated B cells (ABCs), double-negative 2 (DN2) B cells, and activated naive B cells-and compared them to their canonical CD11c- counterparts. METHODS: Dynamics of the response of the 3 CD11c+ B-cell subsets were assessed at SARS-CoV-2 vaccination in healthy donors by spectral flow cytometry. Distinct CD11c+ B-cell subsets were functionally characterized by optimized in vitro cultures. RESULTS: In contrast to a durable expansion of antigen-specific CD11c- memory B cells over time, both ABCs and DN2 cells were strongly expanded shortly after second vaccination and subsequently contracted. Functional characterization of antibody-secreting cell differentiation dynamics revealed that CD11c+Tbet+ B cells were primed for antibody-secreting cell differentiation compared to relevant canonical CD11c- counterparts. CONCLUSION: Overall, CD11c+Tbet+ B cells encompass heterogeneous subpopulations, of which primarily ABCs as well as DN2 B cells respond early to immune challenge and display a pre-antibody-secreting cell phenotype.

2.
Semin Nucl Med ; 51(5): 474-484, 2021 09.
Article in English | MEDLINE | ID: covidwho-1254012

ABSTRACT

There are a number of normal variants and pitfalls which are important to consider when evaluating F-18 Fluorodeoxyglucose (FDG) with Positron Emission Tomography (PET) in breast cancer patients. Although FDG-PET is not indicated for the initial diagnosis of breast cancer, focally increased glucose metabolism within breast tissue represents a high likelihood for a neoplastic process and requires further evaluation. Focally increased glucose metabolism is not unique to breast cancer. Other malignancies such as lymphoma, metastases from solid tumors as well as inflammatory changes also may demonstrate increased glucose metabolism either within the breast or at other sites throughout the body. Importantly, benign breast disease may also exhibit increased glucose metabolism, limiting the specificity of FDG-PET. Breast cancer has a wide range of metabolic activity attributed to tumor heterogeneity and breast cancer subtype. Intracellular signaling pathways regulating tumor glucose utilization contribute to these pitfalls of PET/CT in breast cancer. The evaluation of axillary lymph nodes by FDG-PET is less accurate than sentinel lymph node procedure, however is very accurate in identifying level II and III axillary lymph node metastases or retropectoral metastases. It is important to note that non-malignant inflammation in lymph nodes are often detected by modern PET/CT technology. Therefore, particular consideration should be given to recent vaccinations, particularly to COVID-19, which can commonly result in increased metabolic activity of axillary nodes. Whole body FDG-PET for staging of breast cancer requires specific attention to physiologic variants of FDG distribution and a careful comparison with co-registered anatomical imaging. The most important pitfalls are related to inflammatory changes including sarcoidosis, sarcoid like reactions, and other granulomatous diseases as well as secondary neoplastic processes.


Subject(s)
Breast Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Breast Neoplasms/pathology , Fluorodeoxyglucose F18 , Humans , Neoplasm Metastasis , Neoplasm Staging
SELECTION OF CITATIONS
SEARCH DETAIL